Crystal Structure of Hyp-1, a Hypericum perforatum PR-10 Protein, in Complex with Melatonin
نویسندگان
چکیده
Hyp-1, a PR-10-fold protein from Hypericum perforatum, was crystallized in complex with melatonin (MEL). The structure confirms the conserved protein fold and the presence of three unusual ligand binding sites, two of which are internal chambers (1,2), while the third one (3) is formed as an invagination of the protein surface. The MEL ligand in site 1 is well defined while that in site 3 seems to be rotating between the side chains of Lys33 and Tyr150 that act as a molecular vise. The patch of electron density in site 2 does not allow unambiguous modeling of a melatonin molecule but suggests a possible presence of its degradation product. This pattern of ligand occupation is reproducible in repeated crystallization/structure determination experiments. Although the binding of melatonin by Hyp-1 does not appear to be very strong (for example, MEL cannot displace the artificial fluorescence probe ANS), it is strong enough to suggest a physiological role of this interaction. For example, trans-zeatin, which is a common ligand of PR-10 proteins, does not overcompete melatonin for binding to Hyp-1 as it does not affect the crystallization process of the Hyp-1/MEL complex, and among a number of potential natural mediators tested, melatonin was the only one to form a crystalline complex with Hyp-1 with the use of standard crystallization screens. Hyp-1 is the second protein in the Protein Data Bank for which melatonin binding has been demonstrated crystallographically, the first one being human quinone reductase.
منابع مشابه
ANS complex of St John’s wort PR-10 protein with 28 copies in the asymmetric unit: a fiendish combination of pseudosymmetry with tetartohedral twinning
Hyp-1, a pathogenesis-related class 10 (PR-10) protein from St John's wort (Hypericum perforatum), was crystallized in complex with the fluorescent probe 8-anilino-1-naphthalene sulfonate (ANS). The highly pseudosymmetric crystal has 28 unique protein molecules arranged in columns with sevenfold translational noncrystallographic symmetry (tNCS) along c and modulated X-ray diffraction with inten...
متن کاملMolecular Cloning and Expression Analysis of hyp-1 Type PR-10 Family Genes in Hypericum perforatum
Hypericum perforatum L. is an important medicinal plant for the treatment of depression. The plant contains bioactive hypericins that accumulate in dark glands present especially in reproductive parts of the plant. In this study, pathogenesis-related class 10 (PR-10) family genes were identified in H. perforatum, including three previously unidentified members with sequence homology to hyp-1, a...
متن کاملPreparation of a polyclonal antibody against hypericin synthase and localization of the enzyme in red-pigmented Hypericum perforatum L. plantlets.
Hypericum perforatum is well known for its antidepressant and anti-inflammatory activities, for which hypericin and its derivatives are indicated to be the most active compounds. Hypericin synthase (Hyp-1) is the only protein proven to catalyze the synthesis of hypericin. In this study, the full-length cDNA of Hyp-1 was chemically synthesized according to the Hyp-1 sequence in GenBank (accessio...
متن کاملMolecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John's wort (Hypericum perforatum L.).
A major gene termed Hyp-1 encoding for hypericin (HyH) biosynthesis was cloned and characterized from Hypericum perforatum (St. John's wort) cell cultures. H. perforatum leaves are widely used as an herbal remedy in the treatment of mild to moderate depression. Hypericin, a photosensitive and red-colored naphthodianthrone, has been reported as the bioactive compound responsible for reversing th...
متن کاملLikelihood-based molecular-replacement solution for a highly pathological crystal with tetartohedral twinning and sevenfold translational noncrystallographic symmetry
Translational noncrystallographic symmetry (tNCS) is a pathology of protein crystals in which multiple copies of a molecule or assembly are found in similar orientations. Structure solution is problematic because this breaks the assumptions used in current likelihood-based methods. To cope with such cases, new likelihood approaches have been developed and implemented in Phaser to account for th...
متن کامل